Code: CS3T4

II B.Tech - I Semester - Regular Examinations - December 2015

FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE AND ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Differentiate NFA and DFA.
 - b) Write about finite automata with output.
 - c) List any 8 identity rules.
 - d) State pumping lemma of regular sets.
 - e) Write down the steps in minimization of context free grammars?
 - f) Show that grammar is ambiguous S->aSbS/ bSaS / ε.
 - g) Find a grammar in Chomsky normal form equivalent to S -> aAbB, A -> aA/a,B -> bB/b.
 - h) Write about multi tape turing machine.
 - i) Draw the model of Turing Machine.
 - j) Write down the mathematical function of turing machine.
 - k) Define NP hard and NP complete problems.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) Construct NFA which accepts the set of all strings over{0, 1} in which there are at least two occurrences of1 between any two occurrences of 0.8 M
 - b) Construct a Moore machine to determine the residue mod 3 for each binary string treated as a binary integer. 8 M
- 3. a) Derive the regular expression for the following finite automata. 8 M

b) Draw an NFA- ϵ that accepts (00)*1* or 1*(00)* over {0, 1}. Translate the above NFA- ϵ to an equivalent NFA. 8 M

4. a) Construct a PDA for the language $L = \{a^nb^mc^{2n} m,n > m \}$	=1}. 7 M
b) Reduce the following grammar to Greibach Normal Form. S->AB, A->BSB, A->BB, B-> aAb, B->a, A->b	9 M
5. a) Design a Turing Machine for the language L={SS/S string from an alphabet {a,b}*}.	is a 10 M
b) Explain in detail about counter machine.	6 M
6. Write short notes ona) Undeciadabilityb) PCPc) Turing Reduciability	5 M 6 M 5 M